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Aortic aneurysms are manifested as progressive dilation 
with high risk for death caused by rupture. The most 

common locations are the infrarenal abdominal and ascending 
aortic regions in humans. This article highlights some recent 
publications in ATVB that have provided insights into under-
standing mechanisms and potential therapeutic strategies for 
aortic aneurysms.

Abdominal Aortic Aneurysms
Human Studies
The incidence of abdominal aortic aneurysms (AAA) is 
increasing in the elder population.1 Independent risk factors 
for AAA include not only aging but also male and smoking,2–6 
whereas some risk factors such as hypertension and hyper-
cholesterolemia have not been consistently demonstrated to 
be independent risk factors.3,7,8 There are several recent popu-
lation studies that have enhanced or extended insights into risk 
factors for AAA or associations with AAA.

The ARIC study (Atherosclerosis Risk in Communities) 
is a 24-year prospective study recruited 15 792 participants. 
Tang et al9 evaluated lifetime risk and risk factors for AAA in 
this large cohort. Smoking is not only the most prevalent risk 
factor but also a lifetime risk for AAA in men. Higher plasma 
low-density lipoprotein or total cholesterol is also associated 
with increased risk for AAA.

Inflammation is apparent during the initiation and devel-
opment of AAA in animal models. Inflammatory cell types 
and markers have also been detected in human AAA.10–12 
Psoriasis and asthma have profound inflammatory responses. 
A previous systematic review and meta-analysis has shown 
an association between psoriasis and AAA.13 Recently, ret-
rospective cohort studies using Danish populations reported 
that psoriasis14 and asthma15 were associated with higher risk 
for AAA.

Animal studies have provided consistent evidence that the 
renin–angiotensin system plays a critical role in development 
of AAA.16–18 There is also evidence from a retrospective human 
study that inhibition of angiotensin-converting enzyme in the 
renin–angiotensin system prevents progression of AAA.19 In 
Danish nation-wide registries (1995–2011), Kristensen et al20 
found that administration of either angiotensin-converting 
enzyme inhibitors or angiotensin receptor blockers was asso-
ciated with reduction of mortality in patients with AAA.

Human studies have demonstrated that diabetes mellitus 
is associated with lower risk for AAA.21–23 Experimentally, 
hyperglycemia attenuates development of AAA in elastase 
or angiotensin II (AngII)–induced AAA.24 Hemoglobin A1c 
reflects an average of blood glucose concentrations within an 
extended interval of ≈3 months. Using the participant informa-
tion collected from the VIVA (Viborg Vascular) randomized 
screening trials of the Central Denmark Region, Kristensen 
et al25 reported that growth rates of AAA were inversely asso-
ciated with concentrations of hemoglobin A1c. This study 
provides insights that long-lasting elevated blood glucose con-
centrations impair progression of AAA in humans.

Animal Studies
Three common AAA mouse models were developed in the 
early 2000s.26–28 AAA develops in these mouse models by 
elastase perfusion into the infrarenal aorta,26 calcium chloride 
periaortic application to the infrarenal region,28 or AngII sub-
cutaneous infusion.27,29 A spectrum of potential mechanisms 
of AAA have been studied using these mouse models in their 
original or modified forms.11,12,30–34

Inflammatory Cell-Related Mechanisms
Inflammation is a common characteristic of AAA 
lesions,11,16,35,36 which is manifested by inflammatory cell 
accumulation and a wide range of inflammatory molecular 
and signaling changes.

Mellak et al37 studied the trafficking behavior of monocyte 
subsets in AngII-induced AAA in apolipoprotein E (Apoe−/−) 
mice using multiple approaches including bone marrow trans-
plantation, spleen removal, and lymphocyte-deficient mice 
(Rag2−/−). This study provided evidence that AngII promoted 
mobilization of monocytes in spleen to the suprarenal aortic 
region, which was associated with development of AngII-
induced AAA. In addition to inflammatory cell accumulation, 
markers of inflammasomes are present in plasma and AAA.38–40  
Two research groups found that inflammasome activation con-
tributed to AAA in AngII-infused mice.40,41

Contributions of lymphocytes to AAA have also been 
reported in recent studies.11 Splenic B-cell depletion prevented 
monocyte mobilization and attenuated AngII-induced AAA for-
mation.37 Consistent with this finding, Schaheen et al42 reported 
that depletion of B cells by anti-CD20 antibody reduced AAA 
in both AngII-induced and elastase-induced AAA models.

Neutrophils are an essential component of the innate 
immune system.43 Previous studies have implicated poten-
tially important roles of neutrophils in AAA develop-
ment.44–46 Yan et al47 reported that neutrophils contributed 
to elastase-induced AAA in mice associated with release of 
neutrophil extracellular traps and activation of plasmacytoid 
dendritic cells.

Several studies have demonstrated the contribution of mast 
cell activation to AAA development.48–50 Mast cell activation is 
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also one important feature of asthma. A recent study reported 
an association between active asthma and AAA in humans.15 
This group also studied whether pulmonary inflammation, 
a distinguishing feature of asthma, contributed to AAA in 
animal models.51 The authors reported that lung inflamma-
tion augmented AngII and calcium chloride–induced AAA in 
mice, respectively, accompanied by increases of many inflam-
matory markers in plasma, lung, and AAA tissues.

Smooth Muscle Cell, Stem Cell, or 
Platelet-Related Mechanisms
Elastin fragmentation and disruption of aortic integrity are 
prominent components of AAA.36 In a mouse model infused 
with both AngII and β-aminopropionitrile, elastin damage of 
the aortic wall was severe.34 Hypoxia-inducible factor 1α is 
a transcription factor responding to hypoxia, which is abun-
dant in vasculature.52 Deficiency of this transcription factor 
in smooth muscle cells augmented AAA in mice infused with 
both AngII and β-aminopropionitrile, accompanied by disrup-
tion of elastin fiber formation.53

Mesenchymal stem cells are multipotent cells present in 
bone marrow that have the potential to differentiate into a spec-
trum of cell types.54 Sharma et al55 studied the effects of mes-
enchymal stem cells on elastase-induced AAA in mice. They 
first reported that administration of mesenchymal stem cells 
attenuated elastase-induced AAA and reduced interleukin-17, 
a T-lymphocyte-produced proinflammatory cytokine. Their 
recent study provided insights that mesenchymal stem cell 
infusion inhibited macrophage-produced high mobility group 
box 1 production and diminished release of proinflammatory 
cytokines, thereby preventing elastase-induced AAAs.56

Aortic rupture is the fatal consequence of AAA. Platelets 
contribute to thrombosis.57 Studies in mouse and rat models 
have demonstrated that platelets play a critical role in AAA 
development.58–60 To extend insights into the contributions of 
platelets to AAA, Owens et al61 studied the effects of plate-
let inhibitors, aspirin and clopidogrel, on established AAA in 
AngII-infused mice and found that inhibition of platelets pro-
foundly reduced aortic rupture. In addition to effects of plate-
lets in thrombosis and AAA, thrombomodulin, a cofactor of 
thrombin, has also been reported to contribute to both calcium 
chloride–induced and AngII-induced AAA in mice.62 Findings 
in these study implicate important roles of hemostatic factors 
in the development and progression of AAA.

Enzymes, Proteins, Peptides, and Other Factors
This section introduces a variety of factors that have been stud-
ied for both their unique features and common targets, such 
as inflammation and oxidative stress, in AAA development. 
Considering the diversity of their features, we distinguish 
them in general categories and introduce each molecule in 
independent paragraphs following the sequences of enzymes, 
proteins, peptides, and others.

Enzymes
Cysteine proteases are present in human AAA.63 Subramanian 
et al64,65 reported that calpains, calcium-dependent intracel-
lular cysteine proteases, contributed to AngII-induced AAA. 
Although macrophages are an abundant source of calpains, 
their effects on AngII-induced AAA were not dependent on 
their presence in macrophages.66

Focal adhesion kinase is a cytoplasmic tyrosine kinase in 
regulating integrin-mediated signal transduction.67 A phama-
cological inhibitor of focal adhesion kinase diminished both 
the initiation and progression of calcium chloride–induced 
AAA in mice,68 which was associated with modulation of 
macrophage behavior.

p110δ, a member of phosphatidylinositol 3-kinase family, 
is predominantly expressed in leukocytes. Genetic inactiva-
tion of p110δ in mice led to accumulation of macrophages 
in the aorta and augmented calcium chloride–induced AAA.69

Association of AAA with oxidative stress has been stud-
ied extensively.70 The paraoxonase gene cluster reduces oxida-
tive stress. Yan et al71 reported that AngII-induced AAA was 
reduced in the paraoxonase gene cluster transgenic mice in an 
Apoe−/− background, providing new evidence to support asso-
ciation between AAA and oxidative stress.

Proteins
Inhibition of transforming growth factor (TGF)-β leads to 
augmentation of AngII-induced AAA and aortic rupture 
rate.72,73 Thrombospondin-1 exerts an important role in regu-
lating TGF-β1 activity. Krishna et al74 reported that a peptide 
antagonist of thrombospondin-1 accelerated the progression 
of AngII-induced AAA in Apoe−/− mice.

Serum amyloid A is a member of apolipoproteins associ-
ated with high-density lipoprotein. Serum amyloid A is also 
identified as an acute phase inflammatory marker.75 In Apoe−/− 
mice infused with AngII, plasma serum amyloid A profoundly 
increased. Deficiency of serum amyloid A reduced AngII-
induced AAA, accompanied by lower matrix metalloprotein-
ase-2 activity in the aortic wall.76

Peptides
AngII is an octapeptide-inducing vasoconstriction, whereas 
bradykinin is a vasodilator peptide, of which its effects are 
mediated by kinin B2 receptor. Moran et al77 explored effects 
of this receptor on AAA development. Pharmacological 
manipulations provided evidence that kinin B2 receptor con-
tributed to AngII-induced AAA in mice and calcium phos-
phate–induced AAA in rats.77

Intermedin is a calcitonin gene-related peptide. Intermedin 
1–53, a product of preprointermedin, reduced AngII or calcium 
chloride–induced AAA in mice.78 This preventive effect on AAA 
was associated with attenuation of oxidative stress in AAA.

Vitamin D3 and Iron
Mineral homeostasis is important for human health. Recent 
research has also investigated effects of minerals such as cal-
cium and iron on AAA development.

Calcitriol is the active form of vitamin D3, an important 
vitamin in regulating calcium absorption. Administration of 
calcitriol reduced AngII-induced AAA in Apoe−/− mice.79

Accumulation of iron is detected in AAA of humans and 
AngII-infused mice.80 Sawada et al80 discovered that restric-
tion of dietary iron intake diminished AngII-induced AAA.

Recently Reported AAA models
Hypercholesterolemia augments AngII-induced AAA.27,81–84 
To explore molecular mechanisms using this mouse model 
usually requires that mice are bred to either low-density lipo-
protein receptor−/− or Apoe−/− mice, which is both time and 
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cost consuming.85 Several research groups have reported a 
new approach for mimicking depletion of low-density lipo-
protein receptor in C57BL/6 mice to augment atherosclerosis 
by inducing hypercholesterolemia through persistent expres-
sion of a gain-of-function mutation of PCSK9 (proprotein 
convertase subtilisin/kexin type 9).86–90 This mode of inducing 
hypercholesterolemia has also been demonstrated to augment 
AngII-induced AAA.90 A caveat to the wide application of 
this approach is the potential for variable response in different 
strains of mice.88,90

Yamanouchi et al91 modified the traditional calcium chlo-
ride–induced AAA mouse model by adding phosphate buff-
ered saline after the introduction of calcium chloride onto 
the infrarenal aorta, which led to the formation of calcium 
phosphate. Their recent study has also provided evidence that 
calcification is present in human AAA, and pharmacological 
inhibition of osteoclastogenesis prevents the development of 
calcium phosphate–induced AAA in mice.92

Kawasaki disease is an inflammatory disease, which is man-
ifested by myocarditis and coronary arteritis.93,94 A Kawasaki 
disease mouse model induced by stimulation with Lactobacillus 
casei cell wall extract mimics myocarditis and coronary arte-
ritis of the human disease.95,96 Wakita et al97 reported that this 
Kawasaki disease mouse model also developed AAA in the 
infrarenal aortic region, which was associated with interleu-
kin-1 signaling. This finding provides new insights into under-
standing inflammation-mediated mechanisms of AAA.

Thoracic Aortic Aneurysms
Genetic disorders are a prevalent cause of thoracic aortic aneu-
rysms (TAA).98 Recognized representative genetic disruptions 
include mutations in fibrillin-1 (Fbn1) gene and TGF-β recep-
tor–related genetic changes, which cause progressive aortic 
dilation in the aortic root and ascending aortic regions.99–103 
Mouse models have been developed based on some of the 
genetic disruptions identified in humans.

In addition to identified genetic disruptions, bicuspid aor-
tic valves in humans are associated with increased risk for 
TAA.104,105 A recent study compared a set of TGF-β–related 
genes between patients with bicuspid and tricuspid aortic 
valve diseases. The findings implicate that TGF-β–related 
genes and classic signaling pathway are lower in TAA patients 
with bicuspid aortic valves.106

Marfan Mouse Models
There are 2 common mouse models representing Marfan 
syndrome.107,108 One is called Fbn1C1039G/+ mouse contain-
ing a transgene with cysteine to glycine mutation on amino 
acid 1041 of the Fbn1 gene (Fbn1C1041G/+; equivalent to 
C1039Y in humans).107 This transgene leads to modest aortic 
root and ascending aortic dilation in adult mice.107,109,110 The 
other common model is an Fbn1 hypomorphic mouse model, 
which has profound dilation in the aortic root and ascending 
aortic regions with high rates of aortic rupture.108 Recent stud-
ies using these 2 mouse models report that multiple poten-
tial therapeutic strategies hold promise for the treatment of 
TAAs. These include AT1 receptor blockade,109,111,112 caspase 
inhibition,113 and administration of resveratrol.114 Although 

TGF-β signaling activation has been postulated in the aortic 
pathologies,102,115 whether inhibition of TGF-β preventing or 
augmenting TAA in Marfan mouse models has not been con-
sistently reported in the literature.109,112,116

Genetic Disruptions of TGF-β or Its Receptors
TGF-β–related manipulations induce aortic aneurysms in the 
ascending aortic region in mice that also recapitulate the aortic 
pathologies in humans such as Loeys–Dietz syndrome.115 An 
earlier study reported that haploinsufficient Tgfb2 (+/-) mice 
had aortic root dilation.117 Subsequent studies from several 
independent laboratories have demonstrated that genetic dis-
ruption of TGF-β receptor 2 in smooth muscle cells induced in 
adult mice exhibits profound aortic root and ascending aortic 
dilation and disruption of aortic structural integrity.116,118–121 
Wei et al116 also provided direct evidence that deletion of TGF-
β receptor 2 in smooth muscle cells of Fbn1C1041G/+ mice 
accelerated aortic pathologies. Another recent study reported 
that TGF-β receptor 1 deficiency in smooth muscle cells 
caused severe aortopathy in mice.121

Angiotensin II or Other Chemical-Induced TAA
Recently, several groups have reported that AngII induces 
TAA that is restricted to the ascending aortic region.40,122–124 
In contrast to AngII-induced AAA, TAA induced by AngII is 
independent of hypercholesterolemia.125 In addition to AngII-
induced TAA, coinfusion of AngII and β-aminopropionitrile 
also induces TAA in mice.34,126 Ikonomidis et al127 developed 
a mouse model of TAA by applying calcium chloride onto the 
descending thoracic aortic region. Using these mouse models, 
recent studies discovered that genetic depletion of AT1 recep-
tor reduced AngII-induced TAA128,129; nucleotide oligomeriza-
tion domain-like receptor family, pyrin domain containing 3 
caspase-1 inflammasome contributed to AngII-induced TAA40; 
smooth muscle cell–specific deficiency of low-density lipo-
protein receptor–related protein 1 augmented AngII-induced 
TAA130; genetic MMP-2 (matrix metalloproteinase) deficiency 
accelerated AngII-induced TAA, but attenuated calcium chlo-
ride–induced TAA123; and smooth muscle cell–specific defi-
ciency of hypoxia-inducible factor-1α increased TAA in mice 
coinfused with AngII and β-aminopropionitrile.53

Summary
Aortic aneurysms in both abdominal and thoracic regions 
have complex pathophysiological features. There are still 
many unanswered questions and conflicting findings that need 
to be clarified. We hope that this brief review prompts interest 
in reading these highlighted articles to understand potential 
mechanisms of the 2 aortic pathologies from a broad view-
point. We also hope the introduction of these recent publica-
tions helps develop experiments based on current findings to 
explore new mechanisms and effective therapeutics.
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